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Four-dimensional surface motions of the
Slumgullion landslide and quantification
of hydrometeorological forcing
Xie Hu 1,2✉, Roland Bürgmann 1,2, William H. Schulz 3 & Eric J. Fielding 4

Landslides modify the natural landscape and cause fatalities and property damage worldwide.

Quantifying landslide dynamics is challenging due to the stochastic nature of the environ-

ment. With its large area of ~1 km2 and perennial motions at ~10–20mm per day, the

Slumgullion landslide in Colorado, USA, represents an ideal natural laboratory to better

understand landslide behavior. Here, we use hybrid remote sensing data and methods to

recover the four-dimensional surface motions during 2011–2018. We refine the boundaries of

an area of ~0.35 km2 below the crest of the prehistoric landslide. We construct a mechanical

framework to quantify the rheology, subsurface channel geometry, mass flow rate, and

spatiotemporally dependent pore-water pressure feedback through a joint analysis of dis-

placement and hydrometeorological measurements from ground, air and space. Our study

demonstrates the importance of remotely characterizing often inaccessible, dangerous slopes

to better understand landslides and other quasi-static mass fluxes in natural and industrial

environments, which will ultimately help reduce associated hazards.
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Landslides denude mountains, transport sediments to rivers,
lakes and oceans, and modify the Earth’s surface environ-
ment and ecosystem. Landslides of all sizes and rates

represent geohazards that may lead to property damage and
casualties. The hazards that landslides present and their impact
on Earth’s surface primarily depend on their volume and the rate
at which they move, as well as their responsiveness to hydrocli-
matic variability. However, quantifying landslide dynamics is
challenging due to the stochastic nature of the environment (e.g.,
geology, geomorphology, and vegetation), external disturbances
(e.g., fire, climate change, earthquakes, and logging), and the
limited availability of observations (e.g., remote, surface and
subsurface geodetic, and geophysical and hydrological measure-
ments)1–5. Knowledge of landslide behavior primarily depends on
isolated measurements made on and within the landslides, which
are often cost prohibitive or even impossible to obtain, and their
value is limited by conservative interpretations for generalizing to
the entirety of dynamically complex landslides. Incomplete
information of three-dimensional (3D) surface displacements has
limited our ability to infer the continuous landslide depth,
interpret the driving and resisting mechanisms, and develop
accurate forecasts for landslides. Here, we compile a compre-
hensive dataset of remote sensing imagery from air and space,
meteorological records, and in situ surface (extensometer) and
subsurface (inclinometer) deformation measurements, allowing
us to develop a systematic framework for using detailed, tem-
porally variable 3D surface deformation data to quantify the
underlying landslide kinematics and dynamics.

For centuries, the Slumgullion landslide in the San Juan
Mountains of Colorado has snaked its way downhill at ~10–20
mm per day5–16, allowing us to explore both transient and quasi
steady-state mass wasting processes. The original 700-year-old
failure initiated from the edge of the Cannibal Plateau, formed
Lake San Cristobal, and is currently inactive (Fig. 1). About 300
years ago, a ~3900-m-long and 150- to 450-m-wide section of the
landslide reactivated from the original headscarp to a new toe
above Highway 149. The landslide deposits consist of hydro-
thermally altered Tertiary volcanic rocks.

Interferometric synthetic aperture radar (InSAR) has been
widely used to measure ground motions for geohazards
research17–19, but its application at Slumgullion is challenged by
high deformation gradients. In addition, the reconstruction of 3D
surface displacements depends on the availability of multiple view
angles and their distribution16,20. Here, we incorporate data from
the ascending and descending tracks of Copernicus spaceborne
C-band Sentinel-1 SAR (2017–2018) and four flight lines of the
NASA/JPL airborne L-band Uninhabited Aerial Vehicle SAR
(UAVSAR) (2011–2018; Fig. 1a) with a hybrid InSAR phase and
SAR amplitude pixel offset tracking (POT) time-series analysis
(Supplementary Figs. 1 and 2 and Supplementary Table 1)21,22.
The advance in data and method integration illuminates the
spatiotemporal 3D surface evolution from 1000+ individual
displacement maps (Supplementary Fig. 3), two orders of mag-
nitude more than previous SAR-based studies at
Slumgullion14–16. Variations in recharge, mainly from snowmelt,
drive multi-annual decelerations and accelerations, during which

–107.26°

–107.24°
37.99°

38°
–107.26°

–107.24°
37.99°

38˚

N

38
°

37
.9

8°

–107.22°–107.24°–107.26°–107.28°

1 km

T03501

T12502

T21501

T30502

S1-T56

S1-T49

a

Lake
San

Cristobal

Active toe: 11–12

Inactive
toe

Cannibal Plateau

149

CO

–2.7

–0.3
0.3

mm/day
LOS

mm/day

–0.3
0.3

1.6
LOS

b c
Ascending T49 Descending T56

Head: 1–3
Zone of

stretching:
4–6

Hopper
&neck:

7–8

Zone of marginal
pull-apart

basins: 9–10

3
4

12

5
67

8

9
1011

12
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the head of the landslide is the most responsive. The power-law
flow theory helps reconcile the mass movement with the sub-
surface geometry which is explicitly characterized by a novel
description of the landslide thickness, the steepness between the
lateral and bed shear surfaces, and the tilt of the basal bed.

Results
Spatial displacement patterns. The 98 scenes of Sentinel-1 SAR
reveal displacement details over the more slowly deforming head
and toe areas of the landslide (Fig. 1b, c). The fast-moving middle
parts are not resolvable due to extreme InSAR phase gradients at
the available Sentinel-1 orbital period, radar wavelength, and the
amount of displacement over a short distance (see “Methods” for
details). We refine the boundaries of a kinematic element in an
area of ~0.35 km2 below the crest of the prehistoric landslide
(Fig. 1a), which accounts for ~1/3rd of the previously mapped
mobile area8,9,14. We further update the structural zones9,14: head
zone (kinematic elements #1–3) exposed by extensional fractures,
zone of stretching (#4–6) characterized by broad bands of tension
cracks and normal faults, hopper and neck (#7–8) resembling a
funnel, zone of marginal pull-apart basins (#9–10) accompanying
widening of the slide, and toe (#11–12) overriding inactive sur-
faces. The current major source of debris supply appears to be on
the upper flank of the head (blackish area in Fig. 1b, c with

motion to east). Here, the sediments are transported along a
curved track parallel to the margin between elements 1 and 2, at a
large angle from the main stream of the slide.

To systematically analyze the kinematics and mechanics of
Slumgullion, we rely on 3D velocity fields that describe the steady
state, slow-moving earth flow. We obtain eight velocity measure-
ments from four UAVSAR flight lines during each sortie in their
respective azimuth and range directions. The hybrid InSAR-POT
analysis provides us a robust 3D solution over the entire active
landslide area, with a total of 124 scenes. We represent the
deformation in a series of 77 transverse profiles (Fig. 2a and
Supplementary Fig. 4). The displacements in the steep upper head
zone are highly variable with low signal-to-noise ratio (SNR).
Velocity measurements become more coherent from the inter-
section between the head and the zone of stretching, moving at
about 2.5 mm per day. The south part of the zone of stretching
moves at 7 mm per day, and elongated flank ridges extend along
its southeastern lateral margin (Supplementary Fig. 4). The
movement rotates westerly to the narrow hopper and neck. The
velocity profiles regain a symmetric pattern with rates as high as
13 mm per day at the center. The surface topography gradually
develops a bump along the central axis (Supplementary Fig. 4).
The rates decrease to ≤10 mm per day in the zone of marginal
pull-apart basins, and the velocity profiles appear asymmetric
around the internal bends. An oversteepened northwest-facing
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slope divides the toe, and the southern part moves faster along
this internal right-lateral fault at up to 6 mm per day. The
persistently advancing landslide toe results in shifted fronts with
respect to those mapped in the summer of 19918. Multiple pieces
of evidence validate the advance of the toe over its substrate.
UAVSAR-derived 2011–2018 horizontal velocities at the tip of
the toe reach 4–5 mm per day, consistent with the rate
determined from aerial photos taken in 1985 and 19909. The
mapped shifts (Fig. 3a) and the topographic back-projection
(Supplementary Fig. 5) also show that the toe has advanced by
~40m during the past two decades.

Discussion
Inferred landslide channels and subsurface flow. The transverse
longitudinal velocities allow us to invoke the depth-integrated law
of mass conservation in order to estimate the local free-surface
height from the slide channel bottom. Insignificant shear defor-
mation down to about 10-m depth found at the borehole
inclinometer indicates that the landslide materials are highly
plastic and follow non-Newtonian behavior (Supplementary
Fig. 6 and Supplementary Data 1). In addition, SAR and
extensometer (Fig. 3c and Supplementary Data 2) measurements
at lateral flanks reveal appreciable highly localized deformation
that suggests a pseudo-plastic rheology at shallow depths.
Therefore, we apply the power-law flow theory to characterize the
upper pseudo-plug and the lower yield zone above the underlying
bedrock23 (see “Methods”). Viscoplastic flow models suggest that
the longitudinal shear velocities at the surface mirror the shape of
the subsurface channel24,25. We propose a novel geometric
description of the landslide channel, which characterizes the
depth, the steepness between the basal bed surface and the lateral
margins, and the tilt of the basal bed across the landslide with
respect to the horizontal (Fig. 2 and Supplementary Figs. 7–10).

We first focus on the emergent toe where the depth can be
reliably estimated by comparing the surface topography on and
off the distal slide (Supplementary Fig. 5). Compiled with the
UAVSAR-measured surface velocity at the toe, we can quantify
the power-law index as 0.7 and the consistency index as 1.34 ×
1010 Pa sn (Supplementary Fig. 11 and Supplementary Table 2).
We then use the longitudinal surface-velocity profiles in other
parts of the slide to invert for their corresponding geometric
parameters (see “Methods,” Fig. 2e, Supplementary Table 3, and
Supplementary Movie 1). The largest depth (<~30 m) is inferred
underneath the fastest-moving hopper and neck. High steepness
values concentrate at the zone of marginal pull-apart basins in the

lower part of the slide. According to the inferred degree of bed
tilting, the head and toe areas are more asymmetric, consistent
with their irregular outlines. The bed starts from a minor NW tilt
in the zone of stretching and transitions to the largest positive SE
tilt at the biggest bend of the slide. Our quantification of the
landslide geometry yields a total volume of 1.33 × 107 m3,
compared with a previous estimate of 1.95 × 107 m3 (ref. 8). We
can also resolve the subsurface viscoplastic flow rate along with
the channel geometry (Fig. 2c–e). High velocity gradients
concentrate near the bottom of the slide and approach 0 at
shallower depths.

Hydrological forcing and time-dependent landslide deforma-
tion. We also explore the landslide behavior controlled by the
time-variant hydrological environment. Because fluid water is the
essential agent that regulates the pore pressure1,26,27, we explicitly
consider the forms of precipitation and determine the daily fluid
water from snowmelt and rainwater (see “Methods”). The water
year 2018 (October 1, 2017–September 30, 2018) was historically
dry with only 64% of 1981–2010 precipitation average. There was
another dry water year in 2013 from the estimated fluid water
recharge; however, this is barely discernible from raw precipita-
tion data (Supplementary Fig. 12). From the recharge time series,
we simulate pore pressures at depth as a one-dimensional diffu-
sive process from the surface (see “Methods” and Supplementary
Fig. 13).

We investigate the slide’s temporal response to the estimated
seasonal and multi-annual fluid water changes by comparing
Sentinel-1 InSAR results of August in 2017 (wet) and 2018 (dry),
for which time-series solutions are available for both tracks
(Fig. 4). Between the two time periods, radar line-of-sight rates
slowed down by 90% at high elevations (3450 m). The rate
reduction decreases linearly from there to 70% over the upper
slide (3300 m elevation), while it is only around 45% in the toe
area (2950–3100 m elevation). Extensometers located on the
southern flanks of elements 6, 10, and 12 show decelerations by
66%, 40%, and 49%, respectively, between the same periods
(Fig. 3c). The variable rate decreases in response to the reduced
water recharge imply spatiotemporal diversity of pore pressure
feedback.

The UAVSAR hybrid InSAR and POT analysis captures the
temporal behavior of the whole landslide during 2011–2018 at a
coarser temporal sampling (Fig. 5a and Supplementary Figs. 14
and 15). The time series of downslope motions from UAVSAR
and three extensometers match well (Fig. 3c). Based on the long-
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term changes in the fluid-water recharge history, we consider
three multi-annual phases of 8/2011–11/2013, 4/2013–11/2017,
and 10/2016–10/2018. We use an exponential model to quantify
the multi-annual rate changes (i.e., the velocity changes with
respect to initial conditions for each period, see “Methods”).
Element 1 was excluded due to small SNR. Agreeing well with the
hydrological processes, the inferred rate changes are negative for
2011–2013 and 2016–2018, indicative of slowing down, contrast-
ing with the inferred speeding up during 2013–2017 (Fig. 5b and
Supplementary Figs. 16 and 17). The head area consistently
responds most sensitively to recharge changes during all three
phases (Fig. 5b).

The distribution of UAVSAR-measured rate changes with
position on the landslide is consistent with the deceleration vs.
elevation/position relationship observed during 2017–2018 with
Sentinel-1, as well as the extensometer data. This suggests a
correlation between the landslide depth and sensitivity to
hydrological forcing. This is physically consistent because the
diffusive pore pressure changes more strongly and rapidly at
shallow depths, while the response is increasingly damped and
delayed at greater depths. For example, the onset of the pore
pressure increase at 20-m depth lags behind that at 10-m depth
by ~12 days according to the constrained diffusion
model adjusted by the documented hydraulic diffusivity of
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7.8 × 10−5 m2 ·s−1 (ref. 2) and the inferred average pore pressure
of 177 kPa (ref. 12) (see “Methods” and Supplementary Fig. 13).

Implications for the perennial motions of landslides. Water
recharge at Slumgullion increases twice per year, from snowmelt
in late spring and rainfall in late summer and early fall, which
results in a more stable nearly saturated system than landslides
that experience only one significant annual recharge episode. For
instance, the near-saturation condition can last for about half of
the year from March at a characteristic depth of 20 m (Supple-
mentary Fig. 13). Our results also show that over time scales of
several years, Slumgullion accelerates and decelerates due to
multi-year hydrological fluctuations, supporting the hypothesis
that it and other landslides in the Rocky Mountains will slow in
future decades due to predicted temperature increases, pre-
cipitation decreases, and a depletion of supply13. Other factors,
such as changes in vegetation cover and possible large failures at
the headscarp, could make the situation more complicated13.
Moreover, other stabilizing mechanisms, such as shear strength
that increases with shear displacement rate, shear-induced dila-
tive strengthening, soil wetting and swelling along the lateral
margins above the water table, and the forced circulation of pore
fluid around asperities may help augment the resistance27–30.
Hourly sampled subsurface strain and pore pressure data and
laboratory testing may be able to identify and distinguish these
contributions to the landslide strength. If such forces play a role,
we can qualitatively determine that the landslide neck with large
contact areas along the sides, and the zones of hopper and neck
and pull-apart basins that have large irregularities in landslide
depth and steepness, may provide additional stabilizing force.

Conclusions
Unprecedented, interdisciplinary observations, methods and
models combined help to advance the characterization of land-
slide dynamics. Remotely sensed SAR data and hybrid processing
methods allow us to achieve 3D spatiotemporal surface dis-
placements. In situ data sets such as the extensometer measure-
ments locally validate and calibrate the SAR results from air and
space; the inclinometer data provide evidence on the non-
Newtonian behavior of the landslide mass and, together with the
SAR/extensometer-confirmed mobility at the margins, support
the application of power-law viscoplastic flow theory; the pre-
cipitation and temperature records illuminate the fluid recharge
from snowmelt and rainwater; and the piezometer-measured
average pore pressures help translate recharge at the surface to
pore pressures at depth. Our study sheds new light on the
landslide boundaries, geometry, subsurface flow, and how dif-
ferent structural zones respond to the hydroclimatic variability.
Beyond that, our systematic chains of analysis can also be applied
in full or in part to help understand other quasi-static viscoplastic
flow processes associated with solid particles with an interstitial
fluid, such as debris slides, volcanic lahars, and submarine slides.

Methods
SAR data sets. UAVSAR is operated by JPL/NASA21, and the L-band system has
been repeatedly deployed over the Slumgullion landslide since 2011. The wave-
length is 23.8 × 10−2 m and the single-look pixel spacing along the azimuth and the
range directions is 0.6 and 1.67 m, respectively. Taking advantage of the flexible
trajectory of the aircraft, four independent flight lines were deployed aligned with
or orthogonal to the southwesterly slip direction of Slumgullion (Fig. 1a). About 30
acquisitions are now available for each flight line from August 2011 to October
2018, representing a remarkable airborne SAR collection (Supplementary Table 1).

The C-band Sentinel-1A satellite was launched in 2014 by the European Space
Agency, followed by the identical Sentinel-1B satellite launched in 2016. The
wavelength is 5.547 × 10−2 m and the single-look pixel spacing in azimuth and
range directions is 13.9 and 2.3 m, respectively. Ascending track T49 and
descending track T56 data sets cover Slumgullion (Fig. 1a). It was not until mid-
2017 that the Sentinel-1 satellites began to collect the data over this area more

regularly with a 12-day interval. A total of 98 scenes acquired between February
2017 and September 2018 are used for this study. A larger number of
interferograms are applicable for the less deforming head area compared with that
of the toe (Supplementary Table 1).

Interferometric SAR and its feasibility. InSAR measures ground displacements
from the phase difference between SAR acquisitions. One obvious challenge for
InSAR at Slumgullion comes from large displacement gradients. In an ideal case
with perfect coherence, the maximum detectable displacement gradient is one
fringe per pixel31,32:

dmax ¼
λ

2 ´ η
; ð1Þ

where λ is the radar wavelength, and η is the pixel size. For Sentinel-1 data, the
incidence angle at Slumgullion is about 46°. The minimum number of looks to
scale a pixel into a square dimension on the ground is 1 × 4 and thus η= ~14 m
and dmax= 2 × 10−3.

The narrowest and fastest neck region of the landslide moves at ~20 mm
per day and has a width of 200 m; we consider the half width (100 m) to calculate
dx because the most rapidly moving part is in the center. The time interval of
Sentinel-1 data is generally 12 days. This gives an actual displacement gradient of
dact= 2.4 × 10−3, which exceeds the maximum detectable displacement gradient.
Thus, theoretically, Sentinel-1 data are not appropriate for Slumgullion InSAR, at
least not on the fast-moving parts. Fortunately, we can still utilize the Sentinel-1
data over the less deforming head and toe areas. We use a 24-day temporal
threshold, 1 × 4 multi-looks, and a 20 × 20-m filtering window over the head and
toe areas (Supplementary Fig. 2).

For the UAVSAR data sets, we perform InSAR for the image pairs collected a
couple of weeks apart (3–16 days). We use 12 and 3 looks in the azimuth and range
directions, respectively, so that the average pixel dimension is ~7 m. The maximum
detectable displacement gradient dmax= 1.7 × 10−2. In the scenario of the longest
16-day interval, the expected displacement gradient reaches dact ≈ 3.2 × 10−3, one
order of magnitude less than the maximum detectable value, suggesting that the
applied number of looks works for this study.

SAR pixel offset tracking and its feasibility. As a complement to the InSAR
method, POT can resolve large displacements in both azimuth and range directions
by cross correlating the oversampled image patches. The precision can reach up to
1/20th of the pixel spacing22,33,34. The high spatial resolution of UAVSAR makes
POT possible at Slumgullion.

Assuming that the transport zone moves as fast as 20mm per day, the annual slip
is as large as 7m, corresponding to ~12 pixels if the slip occurs along the azimuth
direction and ~4 pixels if along the range direction. With an increasing number of
years, the ~21-m slip over a course of 3 years corresponds to ~35 pixels if the motion
occurs along the azimuth direction and ~13 pixels if along the range direction. When
we apply a matching image patch of 48 × 48 pixels, the overlapping area between
two image patches is too small for an effective cross-correlation, in particular for
the multi-year azimuth offset tracking for the landslide-parallel tracks T03501 and
T21501. Therefore, we use intermediate temporal intervals (0.5–2.5 years) that fit the
resolvability considering the in situ image resolution and displacement rate, so as to
ensure the displacements during the time are smaller than the size of the image patch
to avoid aliasing. We apply 48 × 48-pixel patches for the fly-along-slip tracks (T03501
and T21501), and 32 × 32-pixel patches for the fly-across-slip tracks (T30502 and
T12502). For each track, there are about 100+ offset tracking pairs (Supplementary
Fig. 1 and Supplementary Table 1), allowing us to suppress artefacts and derive
displacement time series.

Enhanced 3D displacements and time-series analysis. One unique aspect of the
UAVSAR data sets is that four independent tracks image the landslide on the same
date. Independent measurements along both azimuth and range directions can be
extracted from the constrained-temporal-interval POT method. We have a more
than sufficient number of data sets to constrain the 3D displacements with high
confidence.

To achieve the 3D time series and velocity, we use the following approach.
First, we set up a grid frame (50 × 50 m for each grid) in the geographic

coordinate system. We reference the data to the same stable area to standardize the
motion magnitude and resample the data to the grid to standardize the positions.

Second, we calculate the time-series displacements for eight measurable
directions (two for each track; four tracks). We only consider the grid elements
with the number of valid measurements exceeding 90% of the total available
number. For each grid element from each measurable direction, we have:

Gradar
m;n ´ tradarn;1 ¼ dradarm;1 ; ð2Þ

where m is the number of data pairs, n is the number of acquisition dates, Gradar
m;n is a

sparse matrix that indicates the sequence of master and slave dates, dradarm;1 is the

SAR-derived displacement measurements, and tradarn;1 represents the time-series
displacements to be solved.
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An enhanced time-series displacement along the range direction is achieved
from combining the short-time-interval InSAR measurements and relatively long-
time-interval pixel offsets while the azimuth displacements are only from the POT
method.

Third, we calculate the 3D time series from the derived azimuth and range time
series tradarn;i , where tradarn;i ¼ ½tradarn;1 ; tradarn;2 ; :::; tradarn;i � (3 ≤ i ≤ 8). For each grid element,
we have:

t3dn;3 ´G
3d
3;i ¼ tradarn;i ; ð3Þ

where G3d
3;i represents the radar unit vectors, and t3dn;3 is the unknown 3D

displacements. The velocity can be estimated from the linear fit of the time series.

Exponential time-series model. We characterize the multi-annual behavior by
representing the longer-term displacement rate changes as an exponential function
of time:

d tð Þ ¼ M ekt � 1
� �

; ð4Þ
where d(t) is the displacement at time t starting from 0, the exponent k can describe
both accelerating (k > 0) and decelerating (k < 0) phases, M is the magnitude
coefficient and its sign is determined by the overall displacements. For an accel-
erating behavior (k > 0),M > 0 is for an increasing trend, andM < 0 for a decreasing
trend, and vice versa. The exponent k highlights the rate changes, and here we
define it as the velocity change with respect to its initial values. The exponential
model allows us to first identify the multi-annual acceleration and deceleration
phases and then quantify the rate changes. Fig. 5 and Supplementary Figs. 16 and

17 show the model results with the input of net 3D motions E2 þ N2 þ U2ð Þ12.

Three-dimensional viscoplastic flow. We simulate the earth flow movement in
an inclined channel (Supplementary Fig. 7). Rheologically, the Slumgullion land-
slide consists of viscoplastic materials. Assuming a Herschel–Bulkley model
rheology35, the bottom layer behaves like a fluid when the shear stress exceeds the
yield stress, and the top layer translates like a rigid plug where the shear rate is
nearly 0. This constitutive law is described by:

τ ¼ τc þ K _γn; ð5Þ
where τc is the yield stress at the yield interface z= h0 (Supplementary Fig. 7b), _γ is
the shear strain rate, K is the consistency index with dimensions of Pa sn, and n is a
dimensionless flow index that characterizes how non-Newtonian the flow is. For
n < 1, the flow is shear thinning and viscosity decreases with increasing shear strain
rate and stress36. This law generalizes the Coulomb material with K= 0 and τc ¼
σ0tanφ where φ is the bulk friction angle; the Bingham fluid with n= 1 and
constant τc; and the power-law fluid with τc= 0. We choose the power-law theory
in this study and we give the reasons below.

The governing equations are given by the mass and momentum balance
equations, supplemented by a no-slip condition at the basal bed, i.e., downslope
velocity u= 0 at z=H, and no shear stress at the free surface, i.e., τ= 0 at z=D.

Assume that, first, the transverse velocity vanishes everywhere, uy≡ 0; and
second, the mass flow occurs in a layer of constant thickness for the infinitesimal
distance downhill, and thus ∂h

∂x ¼ 0. For the power-law flow, the longitudinal
velocity profile can be simplified as23:

ux ¼
n

nþ 1
ρg sin α

K

� �1
n

D� Hð Þnþ1
n � D� zð Þnþ1

n

h i
forH ≤ z ≤D: ð6Þ

Channel configuration. We propose a cross-sectional form of the landslide
(Supplementary Figs. 8b and 9) that captures the situation with a flattening bed,
which is highly likely the case for many sections in the Slumgullion landslide based
on the shape of the velocity profiles and field evidence11:

H ¼ D0 �
tan�1 y þ L

2

� �
´ s

� �þ tan�1 �y þ L
2

� �
´ s

� �

2tan�1 L ´ s
2

� � 1þ 2y ´ sinβ
L

� �
D0; ð7Þ

where D0 is the depth at the central axis, s describes the steepness from the basal
beds to the lateral flanks, and β allows the bed to tilt and thus the channel to be
asymmetric. L represents the landslide width and can be readily extracted from the
displacement map. We invert the channel geometric parameters from the visco-
plastic flow model using the least-squares estimates. We utilized 57 out of 77
transverse velocity profiles, with 20 other profiles being excluded that are in the
upper head zone where the SNR is too low (Fig. 2 and Supplementary Fig. 4). We
can reasonably assume a listric failure surface14 with effectively 0 depth, steepness,
and tilt at the uppermost head.

Choice of power-law flow model and parameterization. A borehole inclin-
ometer37 (located 17m into the landslide normal to the bounding fault from the
middle extensometer monitoring site) reveals negligible motion from the ground
surface to 5-m depth measured between October 19, 2016 and December 7, 2016,
and only ~20-mm of shear deformation occurred between about 5- and 10-m depth
while the ground surface moved by ~0.6m with respect to outside of the landslide

from September 4, 2016 to October 17, 2016 (Supplementary Fig. 6). This provides
strong evidence for the existence of an effectively undeforming plastic plug in the
upper part of the debris slide. On the other hand, SAR data and extensometers37

have confirmed shearing at the shallow lateral flanks (Figs. 2 and 3). The classic
Bingham flow model, with the presence of a yield surface at which flow terminates,
may not be suitable for analyzing the entire landslide. Nonetheless, the Bingham
flow model can be used to quantify the intrinsic viscosity of the frontal toe area38.
Here, we consider a power-law flow regime to allow for the formation of a pseudo-
plug at shallow depth and the development of lateral shear zones.

As the slide is mostly saturated, we consider the density for the saturated
condition2 ρ= 1468 kgm−3 and an average slope α= 8° in Eq. (6). The constitutive
rheology parameters can be inferred if we know the slide depth at the known velocity
profiles. The only reliable depth estimates that exist are at the toe. Because the
emergent toe moves over the old, undeforming ground surface, we can simply
compare the topography on and off the slide toe (Supplementary Fig. 5; ref. 39). The
depths of transverse profiles #76 and #77 are estimated to be 17.2 and 12.8m,
respectively. Then we constrain the constitutive parameters K and n.

Given the strong trade-offs between the flow index n and the consistency index
K, we constrain the best-fit K at given n (e.g., 0.4–1) between the modeled and
observed velocity profiles (Supplementary Table 2). Large n (>0.8) fails to produce
the velocity profiles of #76 and #77 at the anticipated depth, which is reasonable
because when n is close to 1, the flow behaves more like a Newtonian flow, in
contrast with the inferred rheology and observations at Slumgullion. On the other
hand, small n (<0.6) produces too high velocity even at shallow depth
(Supplementary Fig. 11). Therefore, we apply the flow index n as 0.7, and the best-
fit consistency index K as 1.34 × 1010 Pa sn for the whole landslide.

Fluid water recharge. Snowmelt and rainwater are the major sources of fluid
water recharge to the system. To obtain the fluid water recharge, we need to
separate out the rainfall and snowfall from the precipitation, and also extract the
snowmelt from the snow water equivalent (SWE) at the US National Resources
Conservation Service Slumgullion SNOTEL site. We apply the commonly used
linear transition model to estimate the snow fraction in the precipitation based on
the air temperature40. The daily snow S (mm) is given by:

S ¼
0 for Tair ≥Train

Pt
Train�Tair
Train�Tsnow

� �
for Tsnow <Tair <Train

Pt for Tair ≤ Tsnow

8
><

>:
; ð8Þ

where Pt is the daily precipitation total, Tair is the average daily temperature (°C),
Train and Tsnow are the air temperatures thresholds (°C); above Train all precipita-
tion falls as rain and below Tsnow as snow. We apply 4 °C and 0 °C for Train and
Tsnow, respectively, to best fit the occurrence of abundant SWE decrease at the
Slumgullion.

We further infer the snowmelt from the SWE data. We consider the daily
sampled SWE as the sum of the remaining snow from the previous days and the
fresh snow received on the date, from which that of melt is subtracted. Therefore,
the daily snowmelt can be represented asM ¼ S� diff SWEð Þ. We do not allow for
negative snowmelt values likely due to artefacts from wind41. The fluid water
recharge is the sum of Pt and M (Supplementary Fig. 12).

Pore pressure diffusion model. Fluid water recharge modulates the subsurface
pore pressure, Coulomb frictional strength, and landslide rates. Transient pore
pressure changes can be characterized by the one-dimensional diffusion model27,42:

dP
dt

¼ D
d2P
dz2

t > 0; z > 0; ð9Þ

where P is the transient pore pressure, t is time, D is the effective hydraulic
diffusivity, and z is depth below the ground surface. This model describes the
downward propagation of pore pressure waves and captures the first-order beha-
vior of pore pressure changes.

The transient pore pressure near the surface is in essence modulated by fluid
water recharge R(t) on the surface (z= 0):

P ¼ r ´RðtÞ at z ¼ 0: ð10Þ
An empirically calibrated infiltration scaling factor r scales the water to a

pressure value. An analytical solution is given by42,43:

P z; tð Þ ¼ z

2
ffiffiffiffiffiffiffi
πD

p
Z t

0

e�
z2

4D t�sð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � sð Þ3

q P s; z ¼ 0ð Þds: ð11Þ

Groundwater at Slumgullion typically has been observed to be ~2 m below the
ground surface near the middle part of the landslide10,12. This yields a pore
pressure of 177 kPa at the assumed landslide basal depth of 20 m. The hydraulic
diffusivity is known to be 7.8 × 10−5 m2 s−1 (ref. 2). We solve for r that fits the
median pore pressure of 177 kPa at 20-m depth and apply it to estimate the pore
pressure variations for the other depths (Supplementary Fig. 13).
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Data availability
UAVSAR SLC stacks are available from NASA/JPL (https://uavsar.jpl.nasa.gov).
Sentinel-1 data are archived at the Copernicus Open Access Hub (https://scihub.
copernicus.eu) and Alaska Satellite Facility (https://search.asf.alaska.edu). The
Slumgullion LiDAR DEM (https://doi.org/10.5069/G91834KD) is distributed by
OpenTopography (https://opentopography.org). LiDAR data acquisition and processing
completed by the NSF funded National Center for Airborne Laser Mapping.
Meteorological data are available from US Natural Resources Conservation Service
(https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=762). The extensometer and
inclinometer data sets are included in the supplement.

Code availability
The data analysis and processing were conducted with the commercial software
MATLAB. The various scripts for data analysis are available from the authors upon
request.
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